DIY Fan Cooling System Upgrade (Português)

Com a chegada em força do Verão decidi aumentar a capacidade de refrigeração aumentando o número de ventoinhas no sistema de refrigeração e passando o sistema para a parte de trás do aquário.
O Upgrade consistiu em colocar mais 4 ventoinhas a somar as 5 ventoinhas que ja tinha.
Esta nova calha de ventoinhas foi feita exactamente da mesma forma que a anterior calha.
Resultado final:

Com este Upgrade consigo controlar ainda melhor as temperaturas e baixar mais a temperatura da água.

Uma outra vantagem é que não só o aquário é refrigerado como as lâmpadas da calha de iluminação. isto faz com que as lâmpadas T5 operem a temperaturas inferiores aumentado a sua longevidade e potencia de iluminação.

Uma outra vantagem ainda é não permitir que o calor emitido pela calha de lâmpadas T5 chegue à superfície da água.

DIY Sistema TPA’s automáticas (Português)

Uma parte importante que necessariamente tem que ser acautelada em um aquário marinho são as mudanças de água (TPA’s).

Normalmente esta é a parte mais chata do aquário porque envolve na grande maioria das vezes passar tubos pelo meio da casa e andar com bombas de água para trás e para a frente.

Para minimizar esta tarefa e para ajudar a uma melhor manutenção do aquário implementei um sistema de TPA’s automáticas. O sistema consiste nos seguintes items:

  • 2 x bombas da Tunze 5000.020. Estas bombas funcionam entre 9V-12V, custam 15€ cada e são usadas pela Tunze no seu sistema Universal Osmolator;

  • 2x Transformador Externo Universal 12V – 1000 mA;

12v wall adapter

  • Tubo de rega 4-6mm da Gardena que se pode encontrar num AKI por exemplo e também umas curvas da Gardena;

curva 4-6mm gardenatubo 4-6mm gardena

  • 1x programador digital típico que se encontra em qualquer grande superfície;

Assim sendo o sistema que se quer montar é o seguinte:

Cada bomba da Tunze esta ligada a um transformador e os transformadores também são iguais. Estes transformadores estão ligados ao programador digital, portanto quando as bombas entram em ON/OFF entram ao mesmo tempo. A seguir foi so colocar o tubo conforme está no esquema e o circuito que cada bomba faz é igual ao circuito da outra bomba, para se garantir que ambas as bombas vão debitar a mesma quantidade de água no mesmo espaço de tempo.

Assim sendo e estando o sistema montado 1 minuto ON corresponde 1 litro de água. Assim sendo a partir da 20h da noite e depois de hora em hora as bombas ligam 1 minutos até perfazer 5  minutos (5 litros).

O recipiente da água nova leva 40L, no entanto só é cheio até aos 30L. Ja o recipiente da agua usada tem 20l e é um jerrican para ser facilmente transportável.

Este sistema tem estado em funcionamento há ja 3 meses em forma automática e tem funcionado muito bem. A confiança no sistema é muito elevada. No entanto e mesmo caso haja desconfiança no modo automatizado é possível fazer o que quisermos a partir do programador digital. Podemos manter o sistema em OFF e de vez em quando clicar no Botão ON e deixar correr por 15-20 minutos ou outro tempo qualquer conforme o numero de litros que queiramos mudar.

As bombas Tunze foram colocadas a funcionar a 9V porque o transformador é regulável. Não há necessidade de as forçar a funcionar a 12V porque so as ia desgastar mais e o rácio 1 minutos – 1 litro é obtido com as bombas a 9V.

Finalmente deixo uma foto de como a Sump estava já há algum tempo atrás no entanto da para perceber como está organizada a parte debaixo do aquário.
Desta forma as TPA’s ficaram automáticas, so existe a necessidade de a meio da semana despejar o jerrican de água usada porque leva menos litros e 1x por semana encher o aquário que leva a água nova com 30L água de osmose + 1Kg de sal, ligar uma Tunze 3000 l/h que trata durante 24h de misturar o sal com a água. Assim as TPA’s como são graduais também provocam menos alterações ao parâmetros da água e tornam o sistema mais estável.

DIY Fan Cooling System (Português)

Um grande problema que os aquários de Recife enfrentam quando se aproxima a Primavera/Verão são as temperaturas muito elevadas. Para combater a temperatura podemos utilizar sistemas de ventoinhas, chillers/peltiers. Cada um destes sistemas tem vantagens/desvantagens.

Um sistema muito comum e extremamente barato é o de um sistema de refrigeração que utilize ventoinhas. Existem imensos sistemas destes á venda no mercado, no entanto todos estes sistemas á venda caem sempre nos mesmos problemas. Os problemas dos produtos comerciais que identifiquei são:

  • Uso de ventoinhas pequenas 60X60mm ou 80X80mm e consequentemente têm um fluxo muito baixo. Isto é um problema muito grande quando queremos arrefecer 400/500 litros de água. Não vai ser com este tipo de ventoinhas que o vamos conseguir fazer.
  • As marcas mais baratas usam ventoinhas de qualidade duvidosa, enquanto que as marcas mais caras são caras demais para aquilo que oferecem.
  • O suporte da ventoinha que a prende ao vidro do aquário acrescenta um bocado à altura da ventoinha e isto trás problemas, nomeadamente com a altura da calha.  Estes sistemas comerciais mesmo usando pequenas ventoinhas têm um altura tal que acaba por bater na calha de iluminação e invalidar a sua instalação.

De modo a contornar todos estes problemas decidi fazer um sistema de cooling de ventoinhas baseado em sistemas de outros aquariofilistas que também identificaram estes problemas e fizeram os seus próprios sistemas.

A sua construção foi muito simples e so necessitou dos seguintes materiais/equipamentos:

  • Transformador Externo Universal 12V – 1000 mA:

12v wall adapter

  • Calha de alumínio (não enferruja e corta-se facilmente com uma serra) que encaixa no vidro (em forma de “U” e como o vidro tem 12mm, esse “U” tem 15mm) e uma outra calha que faz o suporte as ventoinhas(em forma de “L” de modo a encaixar la a ventoinha, furar e aparafusar a ventoinha ao suporte) depois é so colar as 2 calhas com silicone. Podem encontrar isso tudo no AKI por exemplo;
  • Silicone + Serra ferro (podem encontrar no AKI por exemplo);

y fan cable 3 pin

AIR FLOW 65 m^3/h (38 Cfm)

RUIDO 21 dB/A

ALIMENTAÇÃO: 6 a 13V

NoiseBlocker 92mm XE2

Desta forma pretende-se obter o seguinte esquema ligado em paralelo:

A utilização de ventoinhas de 92mm tem a ver com o facto de ser a altura máxima que tinha disponível entre a calha e o vidro do aquário. Cada uma destas ventoinhas consome 0.11A, portanto utilizando o transformador anteriormente referido é possível ligar 9 ventoinhas destas perfazendo no total 990mA.

Finalmente chegou-se ao resultado final:

Este tipo de sistema é extremamente fácil de fazer, é muito barato e permite utilizar ventoinhas de boa qualidade com baixo ruído e boa capacidade de deslocação de ar. Como o transformador indicado é regulável e caso se queira ter um sistema ultra-silencioso é possível baixar a voltagem directamente no transformador e consequentemente reduzir a rotação das ventoinhas e barulho produzido, no entanto estas ventoinhas mesmo a 12V são extremamente silenciosas.

Este sistema está ligado ao controlador de temperatura Forttex TC10 Digital Controller e até ao momento tem funcionado de forma perfeita e estou completamente satisfeito. De relevar também que estas ventoinhas têm um consumo eléctrico muito baixo. Podem-se utilizar ventoinhas de dimensão superior e/ou inferior desde que se acautele o consumo em mA (mili-Amperes) de forma a não ultrapassar aquilo que o transformador fornece.

Sistemas chiller/peltier

É também possível utilizar sistemas baseados em chiller/peltier que são substancialmente mais caros e consomem imensa energia, no entanto em zonas do globo onde as temperaturas atingem valores extremamente elevados, só usando estes sistemas se consegue reduzir a temperatura da água.

Exemplos de chiller e um sistema DIY baseado em Peltier:

OceanLife Zeus 400 UPS (Português)

Um equipamento importante e que pode salvar os organismos vivos presentes  no aquário em caso de falha de energia é o uso de uma UPS (Uninterruptible Power Supply).

A UPS que está em análise desta review é um produto da OceanLife e o principal objectivo que se pretende aqui demonstrar é o número de horas que esta UPS, ligada a um conjunto de baterias, consegue alimentar determinado equipamento. No caso da Zeus as suas principais características são:

-> Fornecer a energia eléctrica sobre a forma de uma onda sinusoidal pura até ao máximo de 400W;

-> Controlo por um microprocessador;

-> Gestão inteligente das baterias;

-> Protecção contra picos de energia;

-> Menu digital de apresentação do estado de funcionamento;

A tabela detalhada das suas características:

Tal como pode ser lido nesta tabela, para a UPS poder funcionar necessita que tenha ligado á mesma um conjunto de baterias (podem ser ligadas em série ou em paralelo) e que no seu conjunto perfaçam 24 Volts.

As baterias que devem ser utilizadas e que são recomendadas são as baterias de Gel e/ou VRLA. Este aspecto é importante porque apesar deste tipo de baterias ser mais caro que as baterias convencionais (por exemplo as usadas em carros), estas são baterias mais apropriadas para estarem dentro de casa porque em princípio não terão libertação de ácidos e requerem uma manutenção baixa ou até mesmo nula.

Para esta Review foram usadas duas baterias da marca Ultracell (made in UK) de 12 Volts cada ligadas em série á UPS na mesma forma como se pode ver na figura ao lado.

A ligação em série é necessária para cumprir um pré-requisito da UPS, que é uma voltagem de entrada de 24 Volts. Assim necessitamos de 2 baterias de 12 Volts para poder cumprir esse pré-requisito. Podem ser usadas outras combinações de baterias (1x bateria 24V; 4x baterias 6V; etc) no entanto estas baterias de 12 Volts são as que mais facilmente se encontram no mercado á venda e com maior variedade.

Existe também a possibilidade de ir fazendo upgrade ao conjunto de baterias, isto é, posso continuar a adicionar baterias á UPS ligadas em serie e/ou paralelo, desde que no final tenha 24 Volts de entrada.

Para esta Review foram utilizadas 2 baterias de 12 volts e 18Ah (Ampere hora): Ultracell ul18-12. São baterias do tipo VRLA e dentro daquelas que tinha a escolha eram as que apresentavam a melhor relação custo/Ah.

Sabendo que temos que adquirir baterias do tipo GEL ou VRLA, o próximo passo é saber qual a capacidade das baterias que devemos escolher. Para isso vamos precisar de uma máquina de calcular.

Formulas gerais de cálculo

  • X (watts totais) / Y (24 Volts) = Z (Ah)
  • W (capacidade das baterias Ah) / Z (Ah) = K (horas)
  • K (horas) * 0.9 = L (horas finais)

X– São os watts totais que vão estar ligados á Zeus, isto é, se tivermos uma bomba que consome 21 watts, vamos colocar 21W + o consumo da Zeus que penso que andará pelos 16Watts;

Y– Como vamos ligar o sistema em 24 volts dividimos por este valor;

Z– Como resultado vamos ter o consumo do sistema em Amperes hora (Ah). 21W+16W/24V= 1.5416 Ah

W– Aqui vamos colocar qual a capacidade das baterias em Ah. Existem baterias que vão dos 1Ah-80Ah, a escolha é variada. Para o meu caso vou ter 2 baterias de 12 Volts de 18Ah cada. Ficamos com 18Ah a 24V. Vou ter então 18Ah/1.5416 Ah= 11.67 horas

L– Como a UPS protege as baterias de se estragarem, quando a carga das baterias chega aos 10% ela desliga-se. Assim sendo multiplicamos as 11.67 horas * 0.9 = 10.5 horas

Como é possivel ver a formula de cálculo é bastante simples. So temos que saber quantos e quais equipamentos devemos ligar a UPS para poder calcular o número de watts que vão consumir e depois escolher quantas horas queremos que o sistema se mantenha em funcionamento. Depois disso temos que escolher se queremos baterias com mais ou menos Ah e claro que o preço varia consoante este dado.

Resultados

UPS: Zeus UPS 400
Bomba: Vortech MP40W Gen2 @ ReefCrest @ 100% (9W-28W)
Baterias: 2x UltraCell 12V-18Ah (UL 18 – 12)

A bomba de circulação usada e ligada á UPS é uma Vortech MP40W gen2 a funcionar a 100% da sua velocidade máxima e no seguinte programa:

Para este modo eu estimei um consumo médio de 21W, no entanto não sei se corresponde á realidade porque é um modo semi-random e variável.

Como resultado final obtive o seguinte gráfico:

Assim sendo tive um uptime de 10 horas com o setup indicado anteriormente. Se pretender aumentar este uptime para 20h só necessito de ligar mais outro par de baterias iguais.

A esta UPS só liguei a Vortech MP40W no entanto possivelmente também ligarei os leds moonlight que têm um consumo mínimo e permite que os peixes não fiquem tão stressados em caso de falha de energia. A Vortech ligada á UPS permite manter os níveis de oxigénio na água altos e prevenir morte dos seres vivos durante a falha de energia.

Existem outras formas de fornecer energia ao aquário, no entanto e nesta Review so vou analisar a solução Zeus e Vortech Battery Backup.

UPDATE (17 – 01- 2012): 

Após algumas falhas de luz por casa decidi duplicar o número de baterias de modo a ter o dobro da capacidade de armazenagem de energia. As baterias são da marca Zenith e continuam a ser de 18A  e foram todas colocadas e fechadas dentro de uma caixa com espaços para ventilar.

Manuais

Vortech Battery Backup

Certamente e após ler a Review alguns se podem questionar se eu tendo uma bomba Vortech MP40W2 gen2 porque é que eu não uso este acessório. Pretendo agora explicar o porquê de eu rejeitar este acessório em detrimento de um sistema Zeus.


Como devem saber existem 2 controladores diferentes para este tipo de bombas. Um controlador antigo e um novo controlador. Estes controladores oferecem possibilidades diferentes que são relevantes para este tema.


O que acontece com a Vortech Battery Backup e com o controlador antigo é o seguinte:

  • Em caso de falha de energia a bomba baixa para 20% da sua velocidade máxima, isto é, uma velocidade extremamente baixa.
  • O meu aquário em funcionamento normal tem 1X Deltec APF600 + 1X OceanRunner 3500 + 1X Vortech MP40W a 100% a oxigenar a água. Em caso de falha de energia tudo isto fica parado excepto 1X Vortech MP40W a 20%.

Com o controlador novo acontece o seguinte:

  • Exactamente o mesmo que foi descrito anteriormente, mas é possivel regular a velocidade de 0% – 50%.
  • Isto acontece porque o funcionamento da Vortech é a 24V. No entanto a bateria fornecida pela Vortech é de 12V, isto é, no melhor das hipóteses a bomba no máximo ligada á bateria so vai poder rodar a 50% da sua velocidade.

A bateria fornecida pela Vortech é de 12Ah. Como é que a vortech anuncia 36h de uptime ligada a bateria de tão baixos amperes? Porque a sua velocidade cai para 20% da sua velocidade máxima, isto é, fica a rodar muito devagarinho. Se pelo novo driver regular a sua velocidade para 50% da velocidade máxima este uptime de 36h passa para 14h e mesmo assim a vortech so a rodar a 50% da sua velocidade máxima.

E entretanto estamos a pagar 200€ por uma bateria de 12Ah mais um carregador de bateria (é um pouco rudimentar porque o driver deveria carregar a bateria, mas o que acontece é que a vortech fornece uma carregador secalhar de qualidade duvidosa para carregar uma bateria. Existem alguns casos na Reefcentral em que se questiona a qualidade deste carregador)
Junta-se o novo driver por +-60€, isto é, no total 260€.

Se formos analisar a Zeus acontece o seguinte:

  • Custa 220€ e este preço é so para o carregador, isto é, a função da Zeus é so carregar e gerir as baterias que la ligarmos. No fundo a Zeus comporta-se como o carregador que a Vortech fornece e também como gestora das baterias , so que tem uma qualidade muitíssimo superior ao mero carregador da Vortech.
  • No entanto estes 220€ da Zeus não inclui nenhuma bateria. No entanto podemos comprar duas baterias de 12V cada de 18Ah por 40€ cada uma, isto é, no total o sistema da Zeus com estas baterias vai custar 300€.

Este sistema é mais caro, mas agora é que vão aparecer as vantagens tendo em conta estes preços:

  • A Vortech tem uma bateria de 12Ah a 12V.
  • A Zeus fica com 18Ah a 24V, isto é, permite ter a vortech a 100% da sua capacidade em caso de falha de energia (ou se tiver em casa reduzir á minha vontade na rodinha) durante o mesmo período de tempo que a Vortech Battery Backup. No fundo temos mais Ah e mais voltagem.
  • Mas ainda existe uma segunda vantagem para a Zeus, é que por mais 80€ coloco mais 2 baterias e passo a ter 4 baterias e duplicar o uptime para 24h. Se quiser posso adicionar mais outras duas baterias por mais 80€ e passar a ter 36horas de uptime, isto é, tem uma grande capacidade de upgrade por custos baixos.
  • Outra vantagem é que posso ligar outros equipamentos a Zeus. Posso por exemplo ligar o moonlight em caso de falha de luz que so gasta 1-3W, ou em vez de ligar a vortech, ligar a bomba de retorno, etc.

Uninterruptible power supply