About reefcentral

Discoverer

Cura Rocha- Viva & Morta (Português)

Quando se começa a montagem de um aquário de recife, um ponto muito importante para o mesmo é a rocha que devemos colocar. Temos que decidir que quantidade de rocha, que tipo de rocha e a qualidade da mesma. Normalmente nas lojas Portuguesas é costume encontrar rocha Indonésia, Indonésia premium e Fiji. Existem muitos outros tipo no entanto foram estas duas as mais comuns que fui encontrando.

Existe também quem adicione rocha que vem de outras montagens, mas essa situação so acontece quando existe essa possibilidade, no entanto é preciso acautelar sempre que seja rocha nova ou de outro aquário á qualidade da mesma.

Normalmente podemos separar a rocha em 2 tipos. Rocha morta, isto é, rocha que foi retirada do mar/aquário e que foi colocada a secar perdendo todos os microorganismos e vida que continha. Esta costuma ser sempre mais barata.

Existe igualmente rocha viva, isto é, rocha que mantém toda a sua vida e microorganismos e portanto irá serve um “filtro” muito importante para alojar bactérias.

Antes de se colocar estas rochas no aquário deve-se proceder a um tratamento à parte das mesmas em recipientes durante algumas semanas de modo a garantir que ela vai entrar no aquário já com o ciclo iniciado.

O que vou descrever a seguir é a forma de como eu tratei 50Kg de rocha (22Kg viva + 28Kg morta) para o meu aquário de 430L de modo a garantir que começava com o pé direito logo ao encher o aquário pela 1ª vez.

A rocha viva usada foi a seguinte:

Devido a todo o processo de apanha e transporte a rocha não chega nas melhores condições a nossa casa portante torna-se importante trata-la.

Cura da rocha viva Fiji 22Kg:

  • Cubo com dimensões 50*50*50;
  • Começou com 40-50 litros de agua e foi gradualmente subindo até encher;

  • Salinidade 1.025;
  • Temperatura 25 ºC;
  • Coloquei uma bomba Tunze 3000l/h mais uma SunSun 3500 l/h para manter a água em alta turbulência com o objectivo de garantir o maior fluxo de água e a libertação de matéria morta;

  • O escumador entrou depois e la ficou a funcionar e a tirar porcaria do cubo e assim ajudar a baixar os valores de No2, No3;
  • Período de 3 semanas que a rocha teve a ciclar, no entanto á segunda semana ja estava impecável;
  • A rocha é muito boa. Muito porosa e cheia de vida e so assim se explica esta rápida recuperação;
  • Algumas mudanças de água de 50% ao incio, mas no total foram somente umas 5. (ao tar num cubo não gasto quase água nenhuma ao mudar 50%, porque caso fosse no tanque principal gastava imensa água e sal);
  • Neste período foi usada agua da torneira com AquaSafe e uns dias de repouso. Eu sei que devia ter usado agua RO/DI, mas não tinha a unidade de osmose instalada e propriamente calibrada;
  • Durante estas 3 semanas virei a rocha 2/3 vezes para ajudar a libertar matéria morta. Obviamente que cada vez que mexia os valores de NO2 e NO3 até rebentavam a escala icon_biggrin.gif;

Portanto basicamente a cura da rocha viva foi dessa forma e assim fiquei com a rocha em boas condições para entrar no aquário para a montagem.
Recomendo vivamente este processo. Tive imenso sucesso desta forma tendo inclusive a rocha viva desenvolvido algumas pequenas esponjas, coralina, etc durante o período no cubo mesmo com luminosidade praticamente nula.

Ao início os valores de NO2, No3 estavam tremendos, mas mas com o passar do tempo e a ajuda do escumador rapidamente os mesmos testes deram NO2 e No3 a níveis muito baixos e nessa altura percebi a quantidade de bactérias e a capacidade de filtração que as rochas acumulam.

Ciclagem de 28Kg de rocha morta:

  • Ficou repartida em 2 em tanques de plástico á parte também durante 3 semanas;
  • Cada tanque teve um aquecedor com agua a 25 ºC e uma bomba normalissima so a circular água. O aquecedor foi para ajudar a degradar a matéria morta. Para quem não sabe a rocha morta á simplesmente rocha viva mas que depois é passada por Lixívia! A minha até trazia ainda um mini caranguejo perfeitamente conservado e umas esponjas e mais umas coisas. Portanto ja podem imaginar a quantidade assombrosa de lixo que estas rochas trazem;

  • Ciclou em água doce;
  • Logo no primeiro dia agua super-amarela e um cheiro esquesito -> mudança total de água;
  • Nos dias seguintes a agua ia ficando cada vez melhor. Mais algumas mudanças de água;
  • Na 2ª semana quando a rocha viva deu sinais de estar estabilizada e tudo a zeros por curiosidade medi o NO2 da rocha morta e claro valores de rebentar a escala porque afinal de contas a rocha está morta;
  • Desde o primeiro dia adicionei em grandes quantidades de Sera Nitrivec para tentar colonizar a rocha e combater o NO2 e NO3, mas digo-vos que nao teve grande sucesso;

Portanto a rocha morta acabou por ser a maior dor de cabeça. Não voltei a medir mais nenhuma vez o NO2 á 3ª semana portanto não sei com andava. Mas a rocha morta é assim, por isso é que é morta e não viva
Mas penso que foi uma boa forma de a limpar, de a tentar colonizar de forma artificial e de a preparar ao máximo para entrar no tanque principal.
Nesta fase nunca misturei a rocha morta com rocha viva. Cada coisa para seu lado.

Após todo este processo que durou 3 semanas a rocha estava pronta para entrar para o aquário e assim ocorreu.
Espero que esta pequena descrição da minha experiência nesta matéria seja útil a quem pretenda acrescentar rocha ao sistema ou montar um novo aquário.

Visit us on

DIY Fan Cooling System (Português)

Um grande problema que os aquários de Recife enfrentam quando se aproxima a Primavera/Verão são as temperaturas muito elevadas. Para combater a temperatura podemos utilizar sistemas de ventoinhas, chillers/peltiers. Cada um destes sistemas tem vantagens/desvantagens.

Um sistema muito comum e extremamente barato é o de um sistema de refrigeração que utilize ventoinhas. Existem imensos sistemas destes á venda no mercado, no entanto todos estes sistemas á venda caem sempre nos mesmos problemas. Os problemas dos produtos comerciais que identifiquei são:

  • Uso de ventoinhas pequenas 60X60mm ou 80X80mm e consequentemente têm um fluxo muito baixo. Isto é um problema muito grande quando queremos arrefecer 400/500 litros de água. Não vai ser com este tipo de ventoinhas que o vamos conseguir fazer.
  • As marcas mais baratas usam ventoinhas de qualidade duvidosa, enquanto que as marcas mais caras são caras demais para aquilo que oferecem.
  • O suporte da ventoinha que a prende ao vidro do aquário acrescenta um bocado à altura da ventoinha e isto trás problemas, nomeadamente com a altura da calha.  Estes sistemas comerciais mesmo usando pequenas ventoinhas têm um altura tal que acaba por bater na calha de iluminação e invalidar a sua instalação.

De modo a contornar todos estes problemas decidi fazer um sistema de cooling de ventoinhas baseado em sistemas de outros aquariofilistas que também identificaram estes problemas e fizeram os seus próprios sistemas.

A sua construção foi muito simples e so necessitou dos seguintes materiais/equipamentos:

  • Transformador Externo Universal 12V – 1000 mA:

12v wall adapter

  • Calha de alumínio (não enferruja e corta-se facilmente com uma serra) que encaixa no vidro (em forma de “U” e como o vidro tem 12mm, esse “U” tem 15mm) e uma outra calha que faz o suporte as ventoinhas(em forma de “L” de modo a encaixar la a ventoinha, furar e aparafusar a ventoinha ao suporte) depois é so colar as 2 calhas com silicone. Podem encontrar isso tudo no AKI por exemplo;
  • Silicone + Serra ferro (podem encontrar no AKI por exemplo);

y fan cable 3 pin

AIR FLOW 65 m^3/h (38 Cfm)

RUIDO 21 dB/A

ALIMENTAÇÃO: 6 a 13V

NoiseBlocker 92mm XE2

Desta forma pretende-se obter o seguinte esquema ligado em paralelo:

A utilização de ventoinhas de 92mm tem a ver com o facto de ser a altura máxima que tinha disponível entre a calha e o vidro do aquário. Cada uma destas ventoinhas consome 0.11A, portanto utilizando o transformador anteriormente referido é possível ligar 9 ventoinhas destas perfazendo no total 990mA.

Finalmente chegou-se ao resultado final:

Este tipo de sistema é extremamente fácil de fazer, é muito barato e permite utilizar ventoinhas de boa qualidade com baixo ruído e boa capacidade de deslocação de ar. Como o transformador indicado é regulável e caso se queira ter um sistema ultra-silencioso é possível baixar a voltagem directamente no transformador e consequentemente reduzir a rotação das ventoinhas e barulho produzido, no entanto estas ventoinhas mesmo a 12V são extremamente silenciosas.

Este sistema está ligado ao controlador de temperatura Forttex TC10 Digital Controller e até ao momento tem funcionado de forma perfeita e estou completamente satisfeito. De relevar também que estas ventoinhas têm um consumo eléctrico muito baixo. Podem-se utilizar ventoinhas de dimensão superior e/ou inferior desde que se acautele o consumo em mA (mili-Amperes) de forma a não ultrapassar aquilo que o transformador fornece.

Sistemas chiller/peltier

É também possível utilizar sistemas baseados em chiller/peltier que são substancialmente mais caros e consomem imensa energia, no entanto em zonas do globo onde as temperaturas atingem valores extremamente elevados, só usando estes sistemas se consegue reduzir a temperatura da água.

Exemplos de chiller e um sistema DIY baseado em Peltier:

Visit us on

Forttex TC-10 Digital Thermostat (Português)

Um equipamento muito importante a ter num aquário é um controlador de temperatura que permita fazer uma leitura precisa da temperatura e ao mesmo tempo permita controlar os sistemas de aquecimento ou arrefecimento da água.

Nesta Review é analisado este pequeno controlador que cumpre os objectivos anteriormente mencionados. O equipamento em questão é o Forttex TC-10 Digital Thermostat Package 2.

Existem varias versões deste controlador (com ou sem caixa de protecção) e este controlador em específico é fornecido para além do controlador digital, uma sonda de temperatura e uma caixa de plástico para protecção.

Para o controlador poder regular os sistemas de aquecimento ou arrefecimento é necessário fazer algumas ligações eléctricas de modo a que do controlador saiam 2 tomadas, sendo uma para equipamento de aquecimento e outra para equipamento de arrefecimento.

As ligações eléctricas são bastantes simples e podem ser visualizadas na imagem seguinte.

Assim que as ligações estiverem feitas e os equipamentos ligados a sua configuração é muito fácil. A leitura da temperatura é muito precisa (mede temperaturas iguais as de um vulgar, mas preciso, termómetro de mercúrio) e facilmente ajustamos a temperatura que queremos que se atinja (25 ºC por exemplo) e se ajuste os pontos em que queremos ligar aquecimento (24.9 ºC) e arrefecimento (25.1 ºC). Os ajustes podem ser feitos numa escala decimal (0.1).

Este controlador tem-se mostrado extremamente preciso e fiável. Das melhores adições que se pode fazer a um aquário não só porque previne desastres de aquecedores com mau funcionamento, mas também porque liga/desliga automaticamente os equipamentos. Isto permite ter uma temperatura no aquário mais estável e controlada e consequentemente melhora o bem estar dos corais e/ou animais.

Para conhecer o equipamento em maior detalhe podem consultar o manual.

Visit us on

OceanLife Zeus 400 UPS (Português)

Um equipamento importante e que pode salvar os organismos vivos presentes  no aquário em caso de falha de energia é o uso de uma UPS (Uninterruptible Power Supply).

A UPS que está em análise desta review é um produto da OceanLife e o principal objectivo que se pretende aqui demonstrar é o número de horas que esta UPS, ligada a um conjunto de baterias, consegue alimentar determinado equipamento. No caso da Zeus as suas principais características são:

-> Fornecer a energia eléctrica sobre a forma de uma onda sinusoidal pura até ao máximo de 400W;

-> Controlo por um microprocessador;

-> Gestão inteligente das baterias;

-> Protecção contra picos de energia;

-> Menu digital de apresentação do estado de funcionamento;

A tabela detalhada das suas características:

Tal como pode ser lido nesta tabela, para a UPS poder funcionar necessita que tenha ligado á mesma um conjunto de baterias (podem ser ligadas em série ou em paralelo) e que no seu conjunto perfaçam 24 Volts.

As baterias que devem ser utilizadas e que são recomendadas são as baterias de Gel e/ou VRLA. Este aspecto é importante porque apesar deste tipo de baterias ser mais caro que as baterias convencionais (por exemplo as usadas em carros), estas são baterias mais apropriadas para estarem dentro de casa porque em princípio não terão libertação de ácidos e requerem uma manutenção baixa ou até mesmo nula.

Para esta Review foram usadas duas baterias da marca Ultracell (made in UK) de 12 Volts cada ligadas em série á UPS na mesma forma como se pode ver na figura ao lado.

A ligação em série é necessária para cumprir um pré-requisito da UPS, que é uma voltagem de entrada de 24 Volts. Assim necessitamos de 2 baterias de 12 Volts para poder cumprir esse pré-requisito. Podem ser usadas outras combinações de baterias (1x bateria 24V; 4x baterias 6V; etc) no entanto estas baterias de 12 Volts são as que mais facilmente se encontram no mercado á venda e com maior variedade.

Existe também a possibilidade de ir fazendo upgrade ao conjunto de baterias, isto é, posso continuar a adicionar baterias á UPS ligadas em serie e/ou paralelo, desde que no final tenha 24 Volts de entrada.

Para esta Review foram utilizadas 2 baterias de 12 volts e 18Ah (Ampere hora): Ultracell ul18-12. São baterias do tipo VRLA e dentro daquelas que tinha a escolha eram as que apresentavam a melhor relação custo/Ah.

Sabendo que temos que adquirir baterias do tipo GEL ou VRLA, o próximo passo é saber qual a capacidade das baterias que devemos escolher. Para isso vamos precisar de uma máquina de calcular.

Formulas gerais de cálculo

  • X (watts totais) / Y (24 Volts) = Z (Ah)
  • W (capacidade das baterias Ah) / Z (Ah) = K (horas)
  • K (horas) * 0.9 = L (horas finais)

X– São os watts totais que vão estar ligados á Zeus, isto é, se tivermos uma bomba que consome 21 watts, vamos colocar 21W + o consumo da Zeus que penso que andará pelos 16Watts;

Y– Como vamos ligar o sistema em 24 volts dividimos por este valor;

Z– Como resultado vamos ter o consumo do sistema em Amperes hora (Ah). 21W+16W/24V= 1.5416 Ah

W– Aqui vamos colocar qual a capacidade das baterias em Ah. Existem baterias que vão dos 1Ah-80Ah, a escolha é variada. Para o meu caso vou ter 2 baterias de 12 Volts de 18Ah cada. Ficamos com 18Ah a 24V. Vou ter então 18Ah/1.5416 Ah= 11.67 horas

L– Como a UPS protege as baterias de se estragarem, quando a carga das baterias chega aos 10% ela desliga-se. Assim sendo multiplicamos as 11.67 horas * 0.9 = 10.5 horas

Como é possivel ver a formula de cálculo é bastante simples. So temos que saber quantos e quais equipamentos devemos ligar a UPS para poder calcular o número de watts que vão consumir e depois escolher quantas horas queremos que o sistema se mantenha em funcionamento. Depois disso temos que escolher se queremos baterias com mais ou menos Ah e claro que o preço varia consoante este dado.

Resultados

UPS: Zeus UPS 400
Bomba: Vortech MP40W Gen2 @ ReefCrest @ 100% (9W-28W)
Baterias: 2x UltraCell 12V-18Ah (UL 18 – 12)

A bomba de circulação usada e ligada á UPS é uma Vortech MP40W gen2 a funcionar a 100% da sua velocidade máxima e no seguinte programa:

Para este modo eu estimei um consumo médio de 21W, no entanto não sei se corresponde á realidade porque é um modo semi-random e variável.

Como resultado final obtive o seguinte gráfico:

Assim sendo tive um uptime de 10 horas com o setup indicado anteriormente. Se pretender aumentar este uptime para 20h só necessito de ligar mais outro par de baterias iguais.

A esta UPS só liguei a Vortech MP40W no entanto possivelmente também ligarei os leds moonlight que têm um consumo mínimo e permite que os peixes não fiquem tão stressados em caso de falha de energia. A Vortech ligada á UPS permite manter os níveis de oxigénio na água altos e prevenir morte dos seres vivos durante a falha de energia.

Existem outras formas de fornecer energia ao aquário, no entanto e nesta Review so vou analisar a solução Zeus e Vortech Battery Backup.

UPDATE (17 – 01- 2012): 

Após algumas falhas de luz por casa decidi duplicar o número de baterias de modo a ter o dobro da capacidade de armazenagem de energia. As baterias são da marca Zenith e continuam a ser de 18A  e foram todas colocadas e fechadas dentro de uma caixa com espaços para ventilar.

Manuais

Vortech Battery Backup

Certamente e após ler a Review alguns se podem questionar se eu tendo uma bomba Vortech MP40W2 gen2 porque é que eu não uso este acessório. Pretendo agora explicar o porquê de eu rejeitar este acessório em detrimento de um sistema Zeus.

Como devem saber existem 2 controladores diferentes para este tipo de bombas. Um controlador antigo e um novo controlador. Estes controladores oferecem possibilidades diferentes que são relevantes para este tema.


O que acontece com a Vortech Battery Backup e com o controlador antigo é o seguinte:

  • Em caso de falha de energia a bomba baixa para 20% da sua velocidade máxima, isto é, uma velocidade extremamente baixa.
  • O meu aquário em funcionamento normal tem 1X Deltec APF600 + 1X OceanRunner 3500 + 1X Vortech MP40W a 100% a oxigenar a água. Em caso de falha de energia tudo isto fica parado excepto 1X Vortech MP40W a 20%.

Com o controlador novo acontece o seguinte:

  • Exactamente o mesmo que foi descrito anteriormente, mas é possivel regular a velocidade de 0% – 50%.
  • Isto acontece porque o funcionamento da Vortech é a 24V. No entanto a bateria fornecida pela Vortech é de 12V, isto é, no melhor das hipóteses a bomba no máximo ligada á bateria so vai poder rodar a 50% da sua velocidade.

A bateria fornecida pela Vortech é de 12Ah. Como é que a vortech anuncia 36h de uptime ligada a bateria de tão baixos amperes? Porque a sua velocidade cai para 20% da sua velocidade máxima, isto é, fica a rodar muito devagarinho. Se pelo novo driver regular a sua velocidade para 50% da velocidade máxima este uptime de 36h passa para 14h e mesmo assim a vortech so a rodar a 50% da sua velocidade máxima.

E entretanto estamos a pagar 200€ por uma bateria de 12Ah mais um carregador de bateria (é um pouco rudimentar porque o driver deveria carregar a bateria, mas o que acontece é que a vortech fornece uma carregador secalhar de qualidade duvidosa para carregar uma bateria. Existem alguns casos na Reefcentral em que se questiona a qualidade deste carregador)
Junta-se o novo driver por +-60€, isto é, no total 260€.

Se formos analisar a Zeus acontece o seguinte:

  • Custa 220€ e este preço é so para o carregador, isto é, a função da Zeus é so carregar e gerir as baterias que la ligarmos. No fundo a Zeus comporta-se como o carregador que a Vortech fornece e também como gestora das baterias , so que tem uma qualidade muitíssimo superior ao mero carregador da Vortech.
  • No entanto estes 220€ da Zeus não inclui nenhuma bateria. No entanto podemos comprar duas baterias de 12V cada de 18Ah por 40€ cada uma, isto é, no total o sistema da Zeus com estas baterias vai custar 300€.

Este sistema é mais caro, mas agora é que vão aparecer as vantagens tendo em conta estes preços:

  • A Vortech tem uma bateria de 12Ah a 12V.
  • A Zeus fica com 18Ah a 24V, isto é, permite ter a vortech a 100% da sua capacidade em caso de falha de energia (ou se tiver em casa reduzir á minha vontade na rodinha) durante o mesmo período de tempo que a Vortech Battery Backup. No fundo temos mais Ah e mais voltagem.
  • Mas ainda existe uma segunda vantagem para a Zeus, é que por mais 80€ coloco mais 2 baterias e passo a ter 4 baterias e duplicar o uptime para 24h. Se quiser posso adicionar mais outras duas baterias por mais 80€ e passar a ter 36horas de uptime, isto é, tem uma grande capacidade de upgrade por custos baixos.
  • Outra vantagem é que posso ligar outros equipamentos a Zeus. Posso por exemplo ligar o moonlight em caso de falha de luz que so gasta 1-3W, ou em vez de ligar a vortech, ligar a bomba de retorno, etc.

Visit us on

Uninterruptible power supply

2012 in review

The WordPress.com stats helper monkeys prepared a 2012 annual report for this blog.

Here’s an excerpt:

4,329 films were submitted to the 2012 Cannes Film Festival. This blog had 27,000 views in 2012. If each view were a film, this blog would power 6 Film Festivals

Click here to see the complete report.

2015 in review

The WordPress.com stats helper monkeys prepared a 2015 annual report for this blog.

Here’s an excerpt:

The concert hall at the Sydney Opera House holds 2,700 people. This blog was viewed about 15,000 times in 2015. If it were a concert at Sydney Opera House, it would take about 6 sold-out performances for that many people to see it.

Click here to see the complete report.

2014 in review

The WordPress.com stats helper monkeys prepared a 2014 annual report for this blog.

Here’s an excerpt:

The concert hall at the Sydney Opera House holds 2,700 people. This blog was viewed about 17,000 times in 2014. If it were a concert at Sydney Opera House, it would take about 6 sold-out performances for that many people to see it.

Click here to see the complete report.

Os números de 2010

Os duendes das estatísticas do WordPress.com analisaram o desempenho deste blog em 2010 e apresentam-lhe aqui um resumo de alto nível da saúde do seu blog:

Healthy blog!

O Blog-Health-o-Meter™ indica: Mais fresco do que nunca.

Números apetitosos

Imagem de destaque

Um Boeing 747-400 transporta 416 passageiros. Este blog foi visitado cerca de 10,000 vezes em 2010. Ou seja, cerca de 24 747s cheios.

Em 2010, escreveu 28 novos artigos, nada mau para o primeiro ano! Fez upload de 196 imagens, ocupando um total de 65mb. Isso equivale a cerca de 4 imagens por semana.

O seu dia mais activo do ano foi 28 de Setembro com 147 visitas. O artigo mais popular desse dia foi Balling Light – Fauna Marin (Português).

De onde vieram?

Os sites que mais tráfego lhe enviaram em 2010 foram reefforum.net, aquariofilia.net, forum.zwame.pt, google.pt e aqualize.com.br

Alguns visitantes vieram dos motores de busca, sobretudo por chaetomorpha, peixe bob, lampadas t5, reefcentral e metodo de balling

Atracções em 2010

Estes são os artigos e páginas mais visitados em 2010.

1

Balling Light – Fauna Marin (Português) Setembro, 2010
1 comentário

2

Iluminação: Calha lâmpadas T5 (Português) Junho, 2010

3

DIY Fan Cooling System (Português) Abril, 2010

4

My Reef Evolution Abril, 2010

5

Forttex TC-10 Digital Thermostat (Português) Abril, 2010

Os números de 2011

Os duendes de estatísticas do WordPress.com prepararam um relatório para o ano de 2011 deste blog.

Aqui está um excerto:

A sala de concertos da Ópera de Sydney tem uma capacidade de 2.700 pessoas. Este blog foi visitado cerca de 12.000 vezes em 2011. Se fosse a sala de concertos, eram precisos 4 concertos egostados para sentar essas pessoas todas.

Clique aqui para ver o relatório completo

2013 in review

The WordPress.com stats helper monkeys prepared a 2013 annual report for this blog.

Here’s an excerpt:

The concert hall at the Sydney Opera House holds 2,700 people. This blog was viewed about 22,000 times in 2013. If it were a concert at Sydney Opera House, it would take about 8 sold-out performances for that many people to see it.

Click here to see the complete report.